
D16 Microprogramming Guide

Introduction

This document details the operation of the microprogram controller in the D16 processor.
It also explains the Microprogram Language used as shorthand to describe and specify
individual micro-operations. Elements of this language, really nothing more than a
simple register-transfer notation, appear in the Processor State Diagram (Control
Sequence), the Microprogram "source" listing itself, and the Microprogram ROM listing.
Each of those documents contains essentially the same information; presented as follows:

The State Diagram illustrates the sequence of D16 operations graphically. It is the
easiest presentation for a human reader to interpret; in it, the Microprogram Language
statements describe the operations performed in each state.

The Microprogram Listing describes exactly the same sequence as the State Diagram,
but it has a rigorous text-only syntax suitable for interpretation by an assembler program.

The Microprogram ROM Listing shows the actual contents of the Microprogram
ROMs, bit by bit.

Microprogram Elements

Addresses and Microprogram Flow

D16 microprogram instructions reside at specific 15-bit addresses within the ROMs.

Each microinstruction address has two fields: the first address field, bits 14 through 7 (8
bits total), is forced to zero for the machine's Base sequence, which implements the
instruction opcode fetch, indirect addressing (if any), instruction skip (if any), and
interrupts (if any). Then, after the CPU Instruction Register has been loaded and
microprogram flow proceeds to the instruction Execute Sequence, the field will be taken
from the least significant byte of the Instruction Register (containing the instruction's
actual opcode); thus allowing execution of that microcode which implements the specific
program instruction.

The second field, Bits 6 through 0 (7 bits), is taken from the Microprogram Counter and
specifies a unique microcode step within either the Base sequence or the Execute
sequence.

There may be up to 255 unique processor instructions on the D16, and each instruction
may contain up to 128 microprogram steps.

Examples:

Address 00000000 0000011 is microprogram step 3 of the Base Sequence.
Address 00010110 0000010 is microprogram step 2 of the JNV instruction (016H).

At the beginning of any new instruction, the microcode sequencer starts at Base sequence
Step 0 (address 00000000 0000000). Microinstruction steps then proceed in direct
numerical sequence, as directed by the Microprogram Counter, except that a jump may
be executed in one of two ways: unconditionally, or as a result of a specific processor
condition or flag setting. Such jumps may be executed either within a specific sequence
(Base or Execute), or between them, such as occurs when the transition is made from the
Base to the Execute sequence after an instruction fetch, or in the transition back to the
Base sequence after the completion of an instruction.

The first two microprogram ROMs, ROM 0 and ROM 1, control the microprogram flow
as follows:

ROM BIT NAME FUNCTION

0 7 BASE/ Base/Execute Select. When this bit is cleared, the next

EXECUTE microprogram cycle will execute out of base address 0; the
Base sequence. When set, the next cycle will execute out
of the base address specified by IR (Instruction Register)
bits 7 through 0; the processor instruction Execute
sequence.

 6 JA6 JA6 through JA0 specify a microprogram jump address, if
5 JA5 required. If no jump is enabled, this address is ignored
4 JA4 and the microprogram counter will be incremented to the
3 JA3 next step in the sequence.
2 JA2
1 JA1
0 JA0

1 7 JMP7 Microprogram Jump Enable 7. If set, will execute a jump
to the microprogram statement address specified by JA6
through JA0 if IE_INT (interrupts enabled with an interrupt
pending) is set during an Execute cycle. This bit is inactive
for a Base cycle.

 6 JMP6 Jump Enable 6. If set, will jump if OVF (Overflow Flag) is
set during an Execute cycle. This bit is inactive for a Base
cycle.

ROM BIT NAME FUNCTION

1 5 JMP5 Jump Enable 5. If set, will jump if ++ (Increment, IR bit
11) is set during a Base cycle, or if CF (Carry Flag) is set
during an Execute cycle.

 4 JMP4 Jump Enable 4. If set, will jump if ID (Indirect, IR bit 10)

is set during a Base cycle, or if P (Positive, inversion of
Accumulator bit 15) is set during an Execute cycle.

 3 JMP3 Jump Enable 3. If set, will jump if M (Memory Reference,
IR bit 8) is set during a Base cycle, or if AC=0 is set during
an Execute cycle.

 2 JMP2 Jump Enable 2. If set, will jump if SKIP bit is set during a
Base cycle, or if OR=0 is set during an Execute cycle.

 1 JMP1 Jump Enable 1. If set, will jump if /RUN bit is set during a
Base cycle, or if IM (Immediate, IR bit 9) is set during an
Execute cycle.

 0 JMP0 Jump Enable 0. If set, will jump unconditionally in either a
Base or an Execute cycle.

Note that the jump conditions have been segregated into two groups, one applicable to
the Base sequence and one to the Execute sequence; the only condition common to both
groups is the unconditional jump (U). The Base sequence jump bit group is ++, ID, M,
SKIP, /RUN, and U. The Execute sequence group is IE_INT, OVF, CF, P, AC=0,
OR=0, IM, and U.

The jump enable bits in each group are not mutually exclusive, and so any number of
them may be set simultaneously; the jump condition will then follow the OR function of
those bits which have been set. For instance, if both the "P" bit (ROM 0 bit 4, JMP4) and
the "AC=0" bit (ROM 0 bit 3, JMP3) are set in a statement within the Execute sequence,
there will be a jump if the Accumulator is non-negative (that is, if it is positive or zero).

CPU Micro-Operations

ROM 2 through ROM 7 control the micro-operations (that is, those discrete operations
which may be completed in a single microprogram step) within the D16 CPU. Each such
micro-operation is enabled by a single bit. A slash (/) preceding the name of the micro-
operation indicates that it is executed if the ROM bit is zero; all other micro-operations
execute if the bit is one.

ROM BIT NAME FUNCTION

2 7 STATE_1 Processor State bits, for application to the Front Panel

6 STATE_0 display. Processor state is indicated as follows, where
STATE_1 is the most significant bit: 00, Fetch;
01, Indirect; 10, Execute; and 11, Interrupt.

 5 /IR_LD If cleared, loads IR from the IDB (Internal Data Bus) at end
of cycle.

 4 RUN_CLR If set, clears the RUN status at end of cycle.

 3 SKIP_SET If set, sets SKIP bit at end of cycle.

 2 SKIP_CLR If set, clears SKIP bit at end of cycle.

 1 IE_SET If set, sets IE (Interrupt Enable) bit at end of cycle.

 0 IE_CLR If set, clears IE bit at end of cycle.

3 7 CF_SET If set, sets CF at end of cycle.

 6 CF_AC0 If set, loads CF with AC (Accumulator) bit 0 at end of.
 cycle.

 5 CF_AC15 If set, loads CF with AC bit 15 at end of cycle.

4 CF_CY If set, loads CF with the ALU (Arithmetic/Logic Unit)
Carry output at end of cycle.

 3 CF_CLR If set, clears CF at end of cycle.

 2 FR_LD If set, loads FR (Flag Register) from IDB at end of cycle.

 1 /FR_EN If cleared, enables FR onto IDB.

 0 ALU_OV_EN If set, loads OV (Overflow Flag) with the ALU

two's-complement Overflow output at end of cycle.

4 7 ALU_FS2 ALU Function Select bits. Determine ALU function as

6 ALU_FS1 follows: 000, Clear; 001, OR minus AC; 010, AC minus
5 ALU_FS0 OR; 011, AC plus OR; 100, AC xor OR; 101, AC or OR;

110, AC and OR; 111, Set.

ROM BIT NAME FUNCTION

4 4 ALU_CY_EN ALU Carry In Enable. If set, CF is applied to the
carry input of the ALU. If cleared, 0 is applied (no
carry in).

 3 /ALU_EN If cleared, enables ALU output onto IDB.

 2 PC_INC If set, increments PC (Program Counter) at end of cycle.

 1 PC_LD If set, loads PC from IDB at end of cycle.

 0 PC_EN If set, enables PC onto IDB.

5 7 SP_INC If set, increments SP (Stack Pointer) at end of cycle.

 6 SP_DEC If set, decrements SP at end of cycle.

 5 /SP_LD If cleared, loads SP from IDB at end of cycle.

 4 /SP_EN If cleared, enables SP onto IDB.

 3 OR_INC If set, increments OR (Operand Register) at end of cycle.

 2 OR_DEC If set, decrements OR at end of cycle.

 1 OR_LD If set, loads OR from IDB at end of cycle.

 0 /OR_EN If cleared, enables OR onto IDB.

6 7 ROR If set, AC executes a rotate right through CF at end of
 cycle.

 6 ASR If set, AC executes arithmetic shift right at end of cycle.

 5 LSR If set, AC executes logical shift right at end of cycle.

 4 SHL If set, AC executes shift left at end of cycle.

 3 ROL If set, AC executes rotate left through CF at end of cycle.

 2 AC_LD If set, loads AC from IDB at end of cycle.

 1 /AC_EN If cleared, enables AC onto IDB.

ROM BIT NAME FUNCTION

6 0 SR_EN If set, enables SR (the Switch Register, on the Front

Panel) onto IDB.

7 7 AR_LD If set, loads AR (Address Register) from IDB.

 6 HI_Z Bus drive control. If set, the External Buses (External

Control Bus, External Address Bus, and External Data Bus)
will assume a high-impedance state, and may be used by
devices external to the processor.

 5 -SPARE- Spare bit; unused at this time.

 4 MEM_REQ Memory Request. When set, asserts /MEM_REQ on ECB
(External Control Bus).

 3 IO_REQ I/O Request. When set, asserts /IO_REQ on ECB.

 2 READ Read Request. When set, asserts /READ on ECB and

enables the EDB (External Data Bus) onto IDB.

 1 WRITE Write Request. When set, asserts /WRITE on ECB.

 0 INT_ACK Interrupt Acknowledge. When set, asserts /INT_ACK on

ECB.

8 7 /IX_LD If cleared, loads IX from IDB at end of cycle.

 6 /IX_EN If cleared, enables IX onto IDB.

 5 /IY_LD If cleared, loads IY from IDB at end of cycle.

 4 /IY_EN If cleared, enables IY onto IDB

 3 -SPARE- Spare bit, unused.

 2 -SPARE- Spare bit, unused.

 1 -SPARE- Spare bit, unused.

 0 -SPARE- Spare bit, unused.

The State Diagram and the Microprogram Listing use these Microprogram Language
statements (in logical TRUE form) to show each operation performed in any
microprogram step. Thus, for most operations there is a one-to-one correspondence

between the statements and the bits in the ROMs. There is one further condensation of
the notation: data transfers are expressed using the character "<".

Examples:

 AC < OR means a transfer of data from the the Operand Register to the

Accumulator over the Internal Data Bus. It is simply a
condensation of the two statements OR_EN, AC_LD.

 AC < DATA means a transfer of data from an external source to the

Accumulator. It is the same as the statement AC_LD, but with
the understanding that some other operation which will route
data from the external source onto the Internal Data Bus (e.g.,
MEM_REQ, READ) is also taking place.

Microprogram flow control, discussed previously, is shown in the "Jump" column of the
Microprogram Listing. To the left of the character ">" is the jump condition, if any. To
the immediate right of the ">" is the Base/Execute command: if B, the next
microinstruction will execute out of the BASE sequence; if E, the next microinstruction
will execute out of the EXECUTE sequence. Then, to the right of the B or E is the jump
address, if any.

Examples:

 > E The next microinstruction will be the next sequential step in the

Execute sequence.

 U > E 7F Unconditional jump: the next microinstruction will be step
7FH of the Execute sequence.

 IE_INT > B 20 Jump on interrupt with interrupts enabled: the next

microinstruction will be the next sequential step in the
Base sequence if there is no interrupt pending; it will be
step 20H of the Base sequence if there is an interrupt
pending.

Note that there is no interaction between the E/B bit and the sequential address. For
instance, if the current microinstruction were step 3AH in the Execute sequence, and it
included the statement "> B," then the next step would be 3BH in the Base sequence.

General Cautions

The design of the processor's WRITE logic is such that Memory or I/O WRITE
operations may not be executed in consecutive microprogram steps. There must be at
least one intervening "non-WRITE" step between them. READ operations are not
subject to this limitation.

Certain micro-operations are mutually exclusive and should never be executed in the
same microprogram step. It makes no sense, for example, to both increment and
decrement the Stack Pointer simultaneously! Here are the specific sets of mutually
exclusive operations:

SKIP_SET, SKIP_CLR

IE_SET, IE_CLR

CF_SET, CF_AC0, CF_AC15, CF_CY, CF_CLR

FR_EN, ALU_EN, PC_EN, SP_EN, OR_EN, AC_EN, SR_EN, READ, IX_EN, IY_EN

PC_INC, PC_LD

SP_INC, SP_DEC, SP_LD

OR_INC, OR_DEC, OR_LD

ROR, ASR, LSR, SHL, ROL, AC_LD

MEM_REQ, IO_REQ, INT_ACK

READ, WRITE

Accidental execution of mutually exclusive operations is not necessarily "locked out,"
and so may cause unpredictable results.

